Sample	Total time of reaction, hours	First run			Second run		
		cis- Dichloro, g.	[a] of cis- dichloro	[α] of filtrate	cis- Dichloro, g.	[a] of cis- dichloro	[a] of filt.
Original				(-0.09)			(-0.09)
Α	1	1.92	+0.06	13	1.13	+0.01	-0.12
в	5	3.64	+ .05	18	4.30	.00	19
С	12	0. 96	+ .05	26	0.75	.00	24
D	24	0.88	+ .02	34	0.80	.01	33
Е	48	0.24	+ .04	40	0.34	.00	40

TABLE III

of $[Co en_2 (NO_2)_2]^+$. The best yield of optically active dinitro product that was ever obtained was 40%. It is apparently possible to convert one form of the $[Co en_2 d-tart]Br$ to the dinitro salt without affecting the other form. When the reaction is allowed to proceed at room temperature, the precipitation of calcium tartrate goes on slowly but steadily until about half is precipitated; the reaction then stops unless the temperature is raised.

Summary

The presence of two or three optically active chelate groups in an octahedral complex tends to fix a definite configuration upon the complex ion as a whole, and in some cases the number of stereoisomers which can be isolated is limited to a small fraction of those theoretically possible. No such effect has been observed in complex ions containing only one asymmetric chelate group. It is now shown that while both the D and L forms of *dextro*-tartrato-*bis*-ethylenediamine cobaltic ion, [Co en₂ d-tart]⁺, form when *dextro*-tartratic acid reacts with [Co en₂ CO₃]⁺, they differ greatly in reactivity. When the mixture of the two is shaken with ethylenediamine at room temperature, part of the material reacts within two hours, giving *dextro*-[Co en₃]⁺⁺⁺. The remainder does not react even in twelve hours and can be recovered. At 50°, a 70% yield of *dextro*-[Co en₃]⁺⁺⁺ is obtained, and very little of the original material can be recovered. Evidently the less reactive form changes to the more reactive as the latter is used up. The reaction with hydrochloric acid seems to follow a similar course, and gives a large yield of *dextro*-rotatory *cis*-[Co en₂ Cl₂] Cl.

Reaction with calcium nitrite gives similar results; at room temperatures or slightly above, about half of the tartrato salt reacts, yielding *dextro*-[Co en_2 (NO₂)₂]⁺. The remainder will not react at room temperatures. At higher temperatures the product is racemized.

These are evidently the first examples of asymmetric synthesis in the field of inorganic complex ions.

URBANA, ILLINOIS NEW ORLEANS, LA.

Received June 21, 1947

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY AT THE OHIO STATE UNIVERSITY]

Hydrofluorination in the Presence of Boron Fluoride

By Albert L. Henne and Robert C. Arnold

The addition of hydrogen fluoride to an olefinic hydrocarbon occurs with great ease¹; addition also takes place easily with asymmetrically halogenated olefins such as CH_2 —CHX, RCH—CX₂ or RCX—CH₂,² while the presence of the vinylic halogens on both sides of the double bond impedes or prevents it.² We have now observed that when the addition is carried out in the presence of small quantities of boron fluoride the reaction is greatly hastened, and even occurs where it had failed in the absence of boron fluoride.

Besides plain hydrofluorination, an alternation of HF additions and HX removals is observed, so that RCH=CX₂ gives not only RCH₂CX₂F, but also RCH=CFX, RCH₂CXF₂, RCH==CF₂ and RCH₂CF₃ in sequence. The presence of the boron fluoride increases the number of these steps and the extent to which they occur; the net effect is to increase the fluorine content of the final product. The use of boron fluoride is particularly advantageous with heavily halogenated olefins, or with olefins bearing a CF₃ group which slows down the reactivity of their double bond. For more reactive olefins, boron fluoride may not be so desirable because it hastens resinification as well as addition; the economy of each case should be individually considered. The literature statement¹ that BF₃ is of no help should be restricted to non-halogenated olefins, where addition is so easy that it does not need any help.

Eleven different olefins were treated with hydrogen fluoride in the molar ratio of 1/2; when BF₃ was added, it was in the concentration shown in grams per mole of olefin in the table of experimental results.

The observed improvements can be explained by the formation of a coördinated complex $HF \rightarrow BF_3$, which enhances the percentage of ionic character of the H-F bond; this facilitates the separation of hydrogen as a proton, and makes it more available for addition to the more negative of the

⁽¹⁾ Grosse and Lind, J. Org. Chem., 3, 26 (1938).

⁽²⁾ Henne and Plueddeman, THIS JOURNAL, 65, 1271 (1943), also Renoll, *ibid.*, 64, 1115 (1942).

		Experim	IENTAL RE	SULTS				
CHCI	$=CCl_2 + 1$	HF → CH	I2ClCCl2F	$(\mathbf{A}) + \mathrm{CH}_2\mathrm{ClC}$	CCIF ₂ (B)			
10	17	BFa,	mole %	mole %	mole % recov-			
-0.	riours	g./ mole	10	в	ery			
60	24	12	18	0	88			
95	12	3	16	3	92			
95 97	3	6	19	2	90			
95	12	6	35	9	82			
95	1	12	16	2	93			
95	3	12	20	3	90			
95	12	12	45	10	84			
95	24	12	60	9	86			
95	3	24	38	2	87			
120	20	20	35	22	57			
160	12	0	0	0	95			
CHCI	=CHCl -	- HF → (CH2CICHC	ClF(A) + poly	ymer (B)			
25	21	12	3	10	83			
60	21	6	17	17	80			
60	11	12	26	25	82			
60	21	12	26	33	68			
95	3	3	10	9	82			
95	3	6	21	17	80			
95	11	6	20	29	54			
95	1	12	19	26	79			
95	3	12	24	29	63			
160	11	0	0	0	60			
$CF_2 ==$	$CCl_2 +$	$\mathrm{HF} \rightarrow 0$	CF ₃ CHCl ₂	(A) + poly	mer (B)			
95	10	24	0	0	97			
150	12	24	42	traces	87			
150	12	0	0	traces	80			
$CFCI = CFCI + HF \rightarrow CF_CICHCIF(A) + nolvmer(B)$								
95	18	24	0	0	89			
150	19	24	trace	trace	96			
190	17	24	43	trace	87			
180	17	0	0	trace	95			
CECI	-001 +	н г → С	FaCICHCL	$(A) + CF_{a=a}$	CCl _e (B)			
100	17	04	201011012	17	0012 (22)			
180	17	24	33 ()	17	02 90			
180	17	0	0	0	89			
$CCl_2 =$	$=CCl_{2} + I$	$4F \rightarrow CC$		(A) + CFCI =	CCl ₂ (B)			
95	13	30	0	U	82			
140	7	24	7	trace	82			
16 0	14	24	15	3	77			
180	17	24	trace	20	87			
180	17	0	0	0	97			
	CHC	$= CF_2 +$	$HF \rightarrow C$	H_2ClCF_3 (A)				
25	0.5	3	90	0	9 0			
95	3	0	70	0	90			
$CF_{3}CCl = CCl_{2} + HF \rightarrow CF_{3}CHClCCl_{2}F(A) + CF_{3}CCl =$								
05	10	11		0	00			
90 150	18	1.4	0	U	00			
100	12	24	9 00	trace	90			
180	17	24	42 01	10	90			
180	17	30	21 0	10	90			
180	17	0	U	U	92			
$CF_3CH == CCIF + HF \rightarrow CF_3CH_2CCIF_2$ (A)								
95	24	5	65	0	85			
120	24	0	0	0	85			

СН₃СН	=CHCl +	- HF CH	→ CH₃CH FCH₂Cl (E	$I_2CHCIF(A)$) + CH ₃ -
60	6	2	12	2 0	56
100	4	0	10	20	60
СН₃СС	I=CHCI -	HF	→ CH ₃ CC	CIFCH ₂ Cl (A)) + CH3-
		•••	2011201 (2	/	
25	5	2	35	4	76
95	4	0	5	10	92

doubly bonded carbons. In support of this interpretation is the opposite fact that hydrogen fluoride addition to alkynes is *slowed down* by an oxygenated solvent such as ether or acetone³; in this case, complex formation with the solvent involves hydrogen bonding to the unshared electrons of the oxygen atom and obstructs separation as a proton for the first stage of addition to the triple bond.

The **direction** of addition was always that expected from the ionic character of the olefin. The vinylic halides acted as if entirely in their resonating form $:CH_2-C$, so that RR'C= \parallel_{X_+} CR"X lead exclusively to HRR'C=CR''XF. By induction, a CF₃ group attached to a doubly bonded carbon caused a polarization opposed to that created by a CH₃ group, so that the polarization of propene and trifluoropropene could be represented as CH₃CH=CH₂ and CF₃CH=CH₂, respectively.

The ease of addition was not determined solely by the extent of polarization of the double bond. CH2=CCl2 accepted hydrogen fluoride more readily than CHCl—CHCl and CCl₂—CF₂ more than CCIF=CCIF; CH3CCI=CCIH was more easily hydrofluorinated than CF₃CH= CCIF, yet the latter compound should be much more polarized than the former due to the combination of the eletronegative character of the CF3 group and the vinylic character of the ==CFCl group. It is proposed that the absolute electron density around the double bond should also be taken into account; if this is done, it is to be expected that all ethylenes bearing a CF₃ group should be slowed down by the electron drainage away from the double bond; in agreement, $HCCl=CCl_2$ was found more easily hydro-fluorinated than $CF_3CCl=CCl_2$. This explanation would be similar to that used for the meta-directing effect of an electronegative group on a benzene ring, and its retarding influence.

Experimental Details

Reaction Equipment.—For relatively low pressure, an 800-ml. steel vessel fitted as previously described⁴ was used; for the higher pressures prevailing with more boron fluoride, a 200 cc. Aminco bomb was used, with superpressure fittings. Heating was done by immerging in a hot water-bath, or by strapping to the electrically heated mantle of a mechanical rocking devise. **Reagents.**—Commercial grades.

(3) Henne and Plueddeman, THIS JOURNAL, 65, 587 (1943).

(4) Henne and Flannagan, ibid., 65, 2362 (1943).

Loading Procedure.—As previously described.^{5.6} Metering of Boron Fluoride.—A steel cylinder of known capacity was connected to a commercial tank of boron fluoride; the gas was admitted and the pressure created was noted. Next, this loaded steel cylinder was connected to the reaction vessel and the amount of boron fluoride delivered was computed from the observed drop in pressure. For very small additions of boron fluoride, a stream of the gas was passed through weighed liquefied hydrogen fluoride cooled to -70° .

Treatment of Reaction Products.—Gaseous products were released through a washing train and collected in a Dry Ice cooled receiver. Liquids were poured on cracked ice, neutralized, steam distilled, dried and separated by fractional distillation. In the few cases where the olefin and its addition product boiled practically at the same temperature, the composition of the distillate was estimated from the index of refraction, but this procedure was avoided as much as possible by using efficient dephlegmators.

Summary

The addition of hydrogen fluoride to halogenated olefins is accelerated or made possible by using small amounts of boron fluoride as a catalyst. The action is attributed to the formation of a coördinate compound $HF \rightarrow BF_3$, in which the H to F bond is weakened; this favors the supply of protons for the first step of the addition to the double bond. The direction and ease of addition are discussed. Eleven olefins have been tried and the results are tabulated.

COLUMBUS, OHIO

Received September 22, 1947

[CONTRIBUTION FROM GENERAL MILLS, INC., RESEARCH DEPARTMENT]

Polyamide Resins from Dilinoleic Acid and Ethylenediamine. Molecular Weight-Viscosity Relationships^{1a}

By R. H. ANDERSON AND D. H. WHEELER

Introduction

In 1941, Bradley and Johnston^{1b} isolated dilinoleic acid in a pure state as the methyl ester by fractional molecular distillation of the heat-polymerized methyl esters of the acids from dehydrated castor oil. They prepared polyesters of triethylene glycol with molecular weights of about 4300. Cowan and Wheeler² prepared polyesters with various glycols having molecular weights up to 20,000 to 30,000.

Polyamides have been prepared by Falkenburg, Teeter, Skell and Cowan³ from various diamines and the residual polymeric fatty acids or esters (mixtures of dimer and trimers of linoleic and linolenic acids). The polyamide from ethylenediamine and these mixed polymeric fatty acids was proposed as a new synthetic coating material⁴ under the name Norelac. The molecular weights of these resins were 3,000 to 5,000, determined by the method of end-groups. The same type of polyamide has been commercially prepared on a pilot plant scale,⁵ and is apparently finding some use as a coating for heat-sealing and laminating paper.

No description has appeared of polyamides from pure dilinoleic acid and ethylenediamine. The present investigation describes the preparation and some properties of such linear polyamides having molecular weights from 2,000 to 15,000.

Viscosities were determined on solutions in 1:1 (1a) Paper No. 79, Journal Series, General Mills, Inc., Research

(3) Falkenburg, Teeter, Skell and Cowan, Oil and Soap, 22, 143 (1945).

butanol-toluene solvent at concentrations from 0.2 to 9.8 g. per 100 cc. and intrinsic viscosities were calculated. The intrinsic viscosity was found to be related to molecular weight by the formula

$$[\eta] = K M^{*} \tag{1}$$

Flory and Stickney⁶ have pointed out the fact that a relationship such as equation (1) really relates to viscosity average (M_v) rather than number average (M_n) molecular weights of non-homogeneous polymers, and that M_v is greater than M_n , but less than $M_{\rm w}$, the weight average molecular weight.

Now, the molecular weights, as determined by end-group titration in the present study, are actually number average molecular weights. The fact that the determined molecular weights and viscosities of these polyamides agree with equation (1) is interpreted to mean that these polymers, as prepared, have essentially a constant ratio of $M_{\rm v}$ to M_n . Flory⁷ has shown on theoretical grounds that for bifunctional condensation polymers, $M_w/$ M_n approaches 2 for higher polymers. Taylor⁸ has shown that the ratio is very nearly 2 for 66nylon polyamide, and that the value of $M_{\mathbf{v}}$ is close to that of M_w . The weight average can therefore be used interchangeably with M_v without introducing serious error.

When mixtures of condensation polyesters or polyamides are considered, the importance of considering a weight average rather than a number average in calculating viscosity is apparent. The viscosity in the molten state of a mixture of polyesters was shown by Flory⁷ to agree with the $M_{\rm w}$,

⁽⁵⁾ Henne and Haeckl, THIS JOURNAL, 63, 2692 (1941).

⁽⁶⁾ Henne and Whaley, ibid., 64, 1157 (1942).

Department. (1b) Bradley and Johnston, Ind. Eng. Chem., 33, 86 (1941).

⁽²⁾ Cowan and Wheeler, THIS JOURNAL, 66, 84 (1944).

⁽⁴⁾ Cowan, Lewis and Falkenburg, ibid., 21, 101 (1944).

⁽⁵⁾ Cowan, Schwab and Falkenburg, Modern Packaging, [9] 17, 103 (1944).

⁽⁶⁾ Flory and Stickney, THIS JOURNAL, 65, 372 (1943).
(7) Plory, *ibid.*, 62, 1057, 3032 (1940).

⁽⁸⁾ Taylor, ibid., 69, 635, 638 (1947).